

PROFINET IO – Decentral Periphery

Functional Scope

Software-Stack

Device Model

Objects & Services

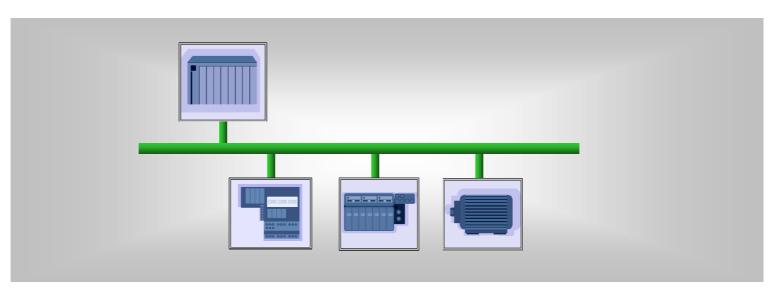
Engineering

Device Description

IO-Controller

Address Assignment

Start up procedure


ARs and CRs

Data Exchange

Diagnosis/Alarms

Proxy

PROFINET IO

Decentral Periphery

PROFII

PROFINET as Modular Technology

PROFINET IO – Decentral Periphery

Functional Scope
Software-Stack

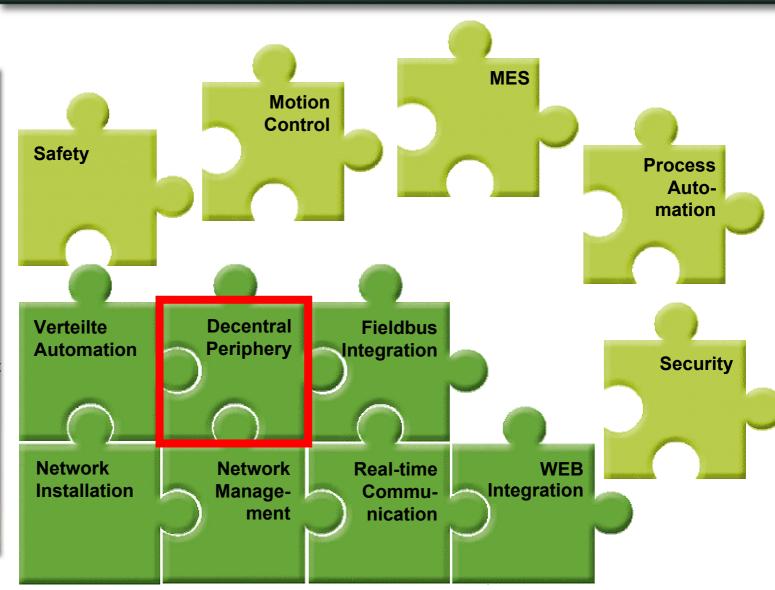
Device Model

Objects & Services

Engineering

Device Description

IO-Controller


Address Assignment

Start up procedure

ARs and CRs

Data Exchange

Diagnosis/Alarms

Why Ethernet for Decentral Periphery?

PROFINET IO – Decentral Periphery

Functional Scope
Software-Stack
Device Model
Objects & Services
Engineering
Device Description
IO-Controller
Address Assignment
Start up procedure
ARs and CRs
Data Exchange
Diagnosis/Alarms

Arguments and Advantages:

- Ethernet is a well proven standard in the Office-World
- Ethernet is used since long time for communication between Controllers in the Automation industry
- Ethernet should also be used to communicate between Controllers and devices
- IT- Functionality can also be used in the field level
- Vertical integration of the field-communication with Manufacturing Execution Systems (MES)

Functional Scope of PROFINET IO

PROFINET IO – Decentral Periphery

Functional Scope

Software-Stack

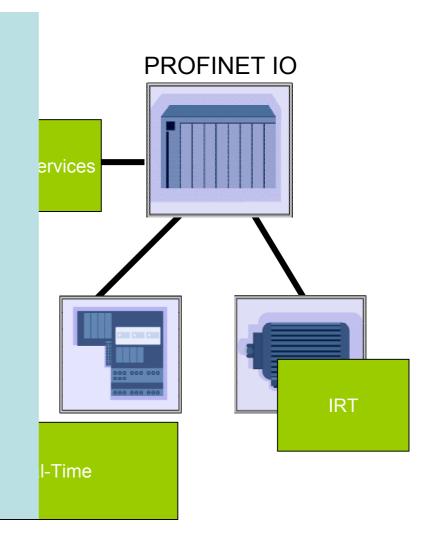
Device Model

Objects & Services

Engineering

Device Description

IO-Controller


Address Assignment

Start up procedure

ARs and CRs

Data Exchange

Diagnosis/Alarms

What is PROFINET IO?

PROFINET IO – Decentral Periphery

Functional Scope

Software-Stack

Device Model

Objects & Services

Engineering

Device Description

IO-Controller

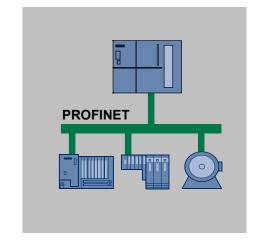
Address Assignment

Start up procedure

ARs and CRs

Data Exchange

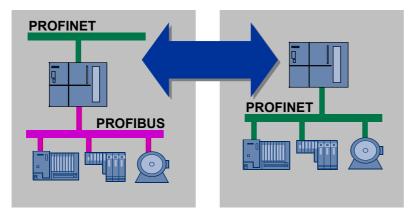
Diagnosis/Alarms


Proxy

PROFINET IO is
Decentral Periphery with
Ethernet connection and
PROFINET communication.

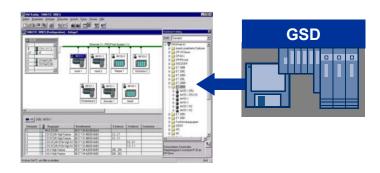
PROFINET IO uses

- Communication via Real-Time and Non Real-Time
- Device description based on XML-standard



How is PROFINET IO implemented?

PROFINET IO – Decentral Periphery


- Functional Scope Software-Stack Device Model Objects & Services
 - Engineering
 - **Device Description**
 - IO-Controller
 - Address Assignment
 - Start up procedure
 - ARs and CRs
 - Data Exchange
 - Diagnosis/Alarms

Proxy

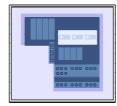
- Decentral Periphery: only the bus interface changes
- Periphery boards can be used universally

- Device Configuration
- 뻐 in well known way
- PLC-User program
- in well known way

Flexible integration of decentral field devices on PROFIBUS and PROFINET possible → Investment Protection

Device Designation and their Roles

PROFINET IO – Decentral Periphery


Functional Scope Software-Stack Device Model Objects & Services Engineering **Device Description IO-Controller** Address Assignment Start up procedure ARs and CRs Data Exchange Diagnosis/Alarms

PROFINET IO-Controller:

- Data exchange of IO signals to assigned field devices
- Device containing the control program Austausch der

PROFINET IO-Device:

- Field Device attached to the PROFINETIO-Controller
- PROFINET IO-Supervisor:
 - HMI and Diagnosis Station

Device Designation and their Roles

PROFINET IO – Decentral Periphery

Functional Scope

Software-Stack

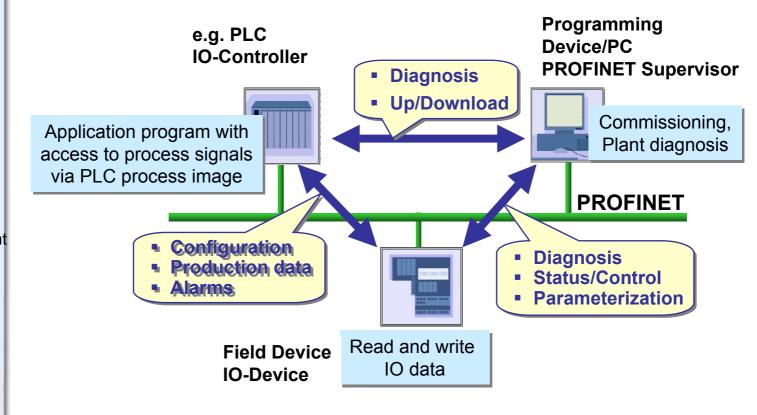
Device Model

Objects & Services

Engineering

Device Description

IO-Controller


Address Assignment

Start up procedure

ARs and CRs

Data Exchange

Diagnosis/Alarms

Communication Stack

PROFINET IO – Decentral Periphery

Functional Scope

Software-Stack

Device Model

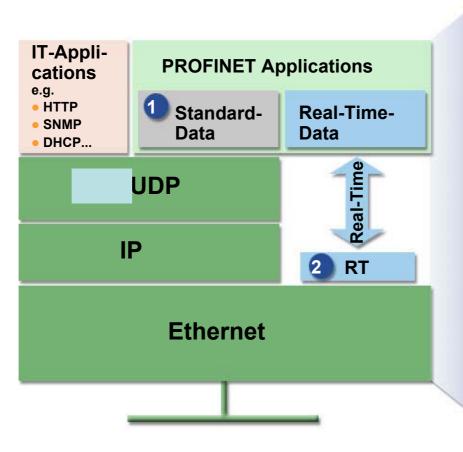
Objects & Services

Engineering

Device Description

IO-Controller

Address Assignment


Start up procedure

ARs and CRs

Data Exchange

Diagnosis/Alarms

Proxy

1 Open channel for UDP/IP

- Device parameterization and configuration
- Reading of diagnosis data
- Negotiation of the communication channel for the user data

2 Real-Time channel RT

- Performant cyclic user data
- Event controlled messages/alarms

Communication Paths

PROFINET IO – Decentral Periphery

Functional Scope

Software-Stack

Device Model

Objects & Services

Engineering

Device Description

IO-Controller

Address Assignment

Start up procedure

ARs and CRs

Data Exchange

Diagnosis/Alarms

Proxy

Non Real Time

- Start up
- Set up of an application relation
- Set up of a communication relation
- Exchange of non time critical informations (read diagnosis,..)
- Exchange of general device informations.
- Read and modify device parameters.
- Read and write process related informations

Real-Time

- Cyclic data exchange
- Consumer-Provider-Model
- Monitoring of the communication
- Alarms

Further relevant Protocols for PROFINET IO

PROFINET IO – Decentral Periphery

Functional Scope

Software-Stack

Device Model

Objects & Services

Engineering

Device Description

IO-Controller

Address Assignment

Start up procedure

ARs and CRs

Data Exchange

Diagnosis/Alarms

Proxy

DHCP (Dynamic Host Configuration Protocol) for assignment of IP-addresses.

DNS (Domain Name Service) to manage logical names

SNMP (Simple Network Management Protocol) to read status and statistic informations.

ARP (Address Resolution Protocol) to convert IP-Addresses into Ethernet Addresses

ICMP (Internet Control Message Protocol) used to transmit error informations.

The PROFINET IO Device Model

PROFINET IO – Decentral Periphery

Functional Scope Software-Stack

- Device Model
 - Objects & Services
- Engineering
- **Device Description**
- **IO-Controller**
- Address Assignment
- Start up procedure
- ARs and CRs
- Data Exchange
- Diagnosis/Alarms
- Proxy

 The PROFINET device model is comparable with PROFIBUS

- Compact devices
- Modular devices
- The reusability of existing IO-Modules from PROFIBUS guarantees investment protection for manufacturers and plant owners.

The PROFINET IO Device Model

PROFINET IO – Decentral Periphery

Functional Scope Software-Stack

Device Model
Objects & Services

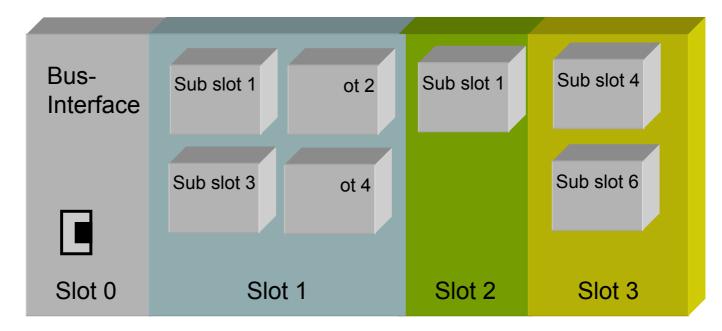
Engineering

Device Description

IO-Controller

Address Assignment

Start up procedure


ARs and CRs

Data Exchange

Diagnosis/Alarms

Proxy

 Existing IO-Periphery and PROFINET-Bus-Interface → PROFINET-Device

- IO-Data is always assigned to a sub slot.
- Every sub slot may have IO-Daten as well as alarms

Objects and Services

PROFINET IO – Decentral Periphery

Functional Scope

Software-Stack

Device Model

Objects & Services

Engineering

Device Description

IO-Controller

Address Assignment

Start up procedure

ARs and CRs

Data Exchange

Diagnosis/Alarms

Proxy

Real Time Data

- Exchange of the cyclic process-data
- Update time is configurable

Characteristics

- cyclic
- Consumer-Provider-Model
- unconfirmed
- configurable update time
- buffer to buffer
- The user data is accompanied by status informationen
- Data exchange is time controlled

Objects and Services

PROFINET IO – Decentral Periphery

Functional Scope

Software-Stack

Device Model

Objects & Services

Engineering

Device Description

IO-Controller

Address Assignment

Start up procedure

ARs and CRs

Data Exchange

Diagnosis/Alarms

Proxy

Non Real Time Data

- Acyclic data exchange
- Parameterization of IO-Devices
- Configuration of IO-Devices
- Read status informationen

Characteristics

- Acyclic data exchange
- Bidirectional
- One to one
- Connection oriented
- Queued
- Confirmed
- Monitoring of Repetition with "SequenceCounter"

Record Data (Read and Write Services)

PROFINET IO – Decentral Periphery

Functional Scope Software-Stack Device Model

Device Model

Objects & Services
Engineering
Device Description
IO-Controller
Address Assignment
Start up procedure
ARs and CRs
Data Exchange

Diagnosis/Alarms

- Diagnosis information can be read from the user from every device at any time
- Logbook entries for alarms and error messages
- Identification informations acc. to PNO-Guideline "I&M Functions"
- Information functions about real and logical module structures.
- IO-Data Objects (to read back the IO-data).

Objects and Services

PROFINET IO – Decentral Periphery

Functional Scope

Software-Stack

Device Model

Objects & Services

Engineering

Device Description

IO-Controller

Address Assignment

Start up procedure

ARs and CRs

Data Exchange

Diagnosis/Alarms

Proxy

Alarms are Real Time data

- Report of operating states
- system defined events (e.g. pull and plug of boards)
- user defined events

Characteristics

- acyclic
- queued
- confirmed
- directed and
- secured

Alarms → "All Inclusive"

PROFINET IO – Decentral Periphery

Functional Scope

Software-Stack

Device Model

- Objects & Services
 - Engineering

Device Description

IO-Controller

Address Assignment

Start up procedure

ARs and CRs

Data Exchange

Diagnosis/Alarms

Proxy

- Process-Alarme shall be used if the event is process related
- Diagnosis-Alarms shall be used if the error or event is coming up device internal
- Pull and Plug-Alarm
- Return-Alarm
- Redundancy alarm
- Control by Supervisor
- Release by Supervisor

The alarms can be prioritised differently

Engineering

PROFINET IO – Decentral Periphery

Functional Scope

Software-Stack

Device Model

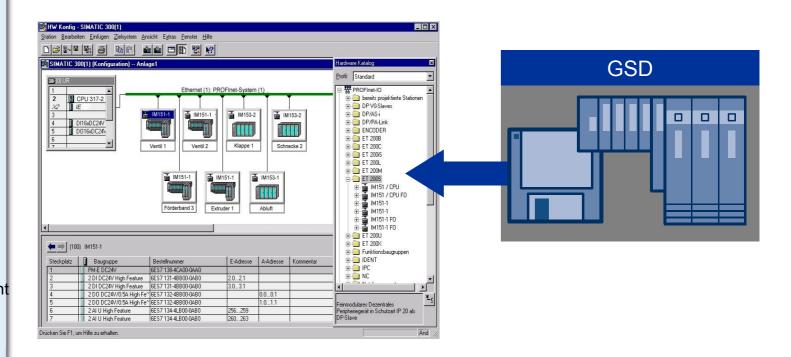
Objects & Services

Engineering

Device Description

IO-Controller

Address Assignment


Start up procedure

ARs and CRs

Data Exchange

Diagnosis/Alarms

Proxy

Identical engineering view for PROFIBUS and PROFINET

From Engineering to Data Exchange

- PROFINET IO –
 Decentral
 - **Functional Scope**
 - Software-Stack
 - Device Model
 - Objects & Services
- Engineering

Periphery

- **Device Description**
- **IO-Controller**
- Address Assignment
- Start up procedure
- ARs and CRs
- Data Exchange
- Diagnosis/Alarms
- Proxy

- Every Ethernet device has the same priority in the network
- Decentral field devices will be assigned to a controller during network configuration
- The device description of the field devices is defined in a GSD-file

© PROFIBUS International

The Device Description (GSD)

PROFINET IO – Decentral Periphery

Functional Scope

Software-Stack

Device Model

Objects & Services

Engineering

Device Description

IO-Controller

Address Assignment

Start up procedure

ARs and CRs

Data Exchange

Diagnosis/Alarms

Proxy

Structure of a GSD File

- Profile Body → DeviceIdentity-Block (VendorID, DeviceID, InfoText, VendorName)
- DeviceFunction-Block → (Family, MainFamily and ProductFamily)
- ApplicationProcess-Block
 - DeviceAccessPointList
 - ModuleList
 - ValueList
 - ChannelDiagList
 - GraphicsList
 - CategoryList
 - ExternalTextList

GSD Example

PROFINET IO – Decentral Periphery

Functional Scope

Software-Stack

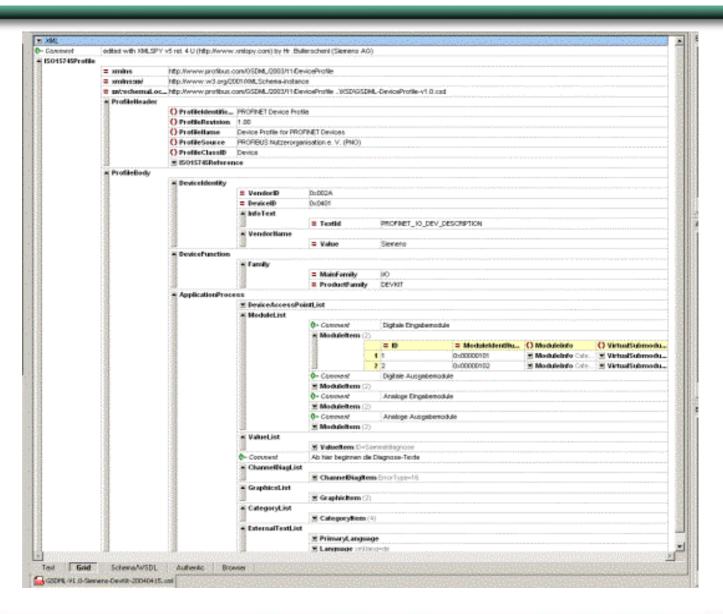
Device Model

Objects & Services

Engineering

Device Description

IO-Controller


Address Assignment

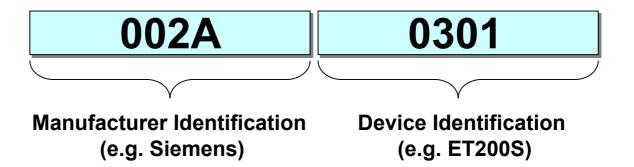
Start up procedure

ARs and CRs

Data Exchange

Diagnosis/Alarms

Unique Device Identification


PROFINET IO – Decentral Periphery

Functional Scope
Software-Stack
Device Model
Objects & Services
Engineering

Engineering

Device Description
IO-Controller
Address Assignment
Start up procedure
ARs and CRs
Data Exchange
Diagnosis/Alarms

- A world wide unique Device-Ident-Number is attached to each PROFINET IO-Device
- The 32-bit Device-Ident-Number is split in:
 - 16-bit Manufacturer Identification (e.g. 002A → Siemens)
 - 16-bit Device Identification (e.g. 0301 → ET200S)
- The Manufacturer Identification is assigned by the PNO
- The device identification can be assigned by the manufacturer

IO Data Exchange

PROFINET IO – Decentral Periphery

Functional Scope

Software-Stack

Device Model

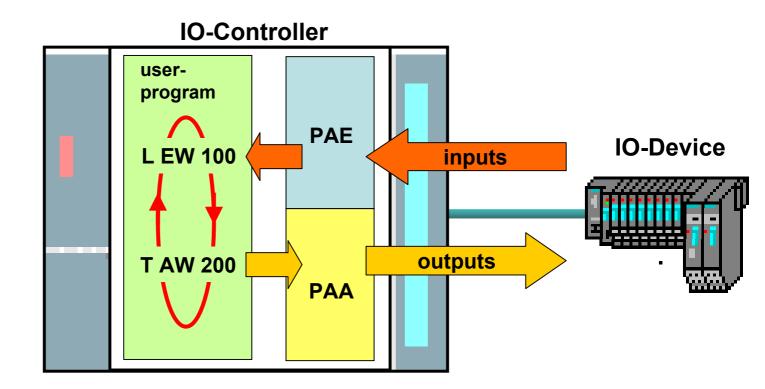
Objects & Services

Engineering

Device Description

IO-Controller

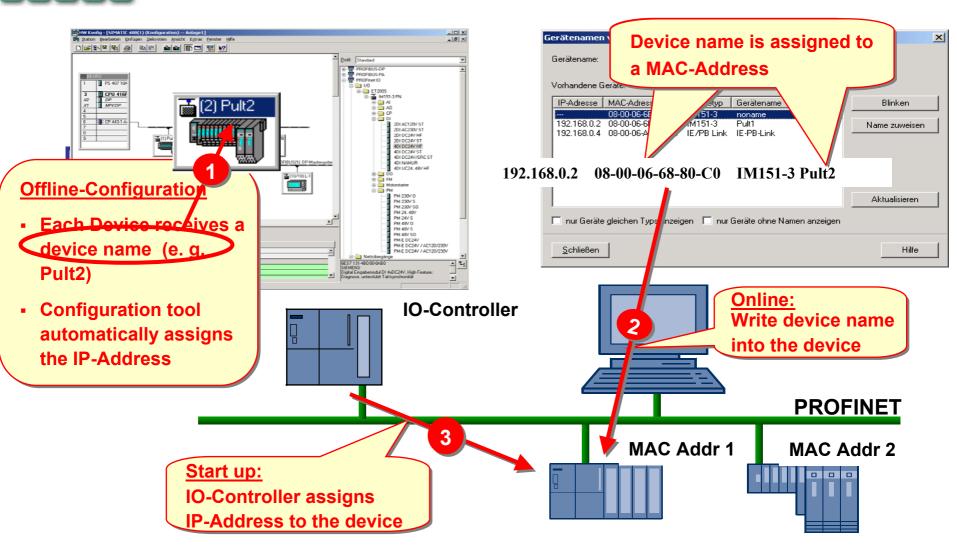
Address Assignment


Start up procedure

ARs and CRs

Data Exchange

Diagnosis/Alarms


Proxy

The IO-data is stored in the process image

PROFU

Example of Address Assignment: PROFINET with DCP (Discovery Configuration Protocol)

The Start-up Phase

PROFINET IO – Decentral Periphery

Functional Scope

Software-Stack

Device Model

Objects & Services

Engineering

Device Description

IO-Controller

Address Assignment


Start up procedure

ARs and CRs

Data Exchange

Diagnosis/Alarms

- The Application Relation (IO-AR) between the devices is set-up by the so called Context Management (CM) via UDP/IP and RPC (Remote Procedure Call).
- This step establishes the communication relation for the process data (IO data CR) automatically.
 - IO-data and update rate is specified here

The Start-up Phase

PROFINET IO – Decentral Periphery

Functional Scope

Software-Stack

Device Model

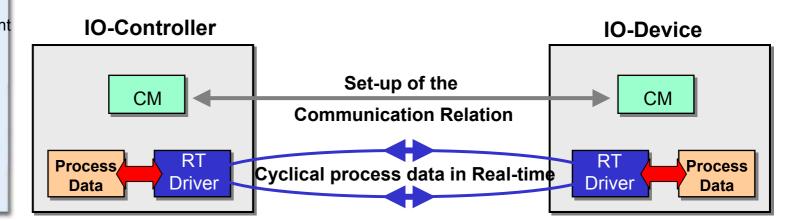
Objects & Services

Engineering

Device Description

IO-Controller

Address Assignment


Start up procedure

ARs and CRs

Data Exchange

Diagnosis/Alarms

- Subsequently, the process data is transmitted cyclically between the devices via the real-time channel
- The cyclic date exchange is done via the real-time channel
- Diagnosis data and alarms are transferred in the acyclic real-time channel

Data Exchange between Devices

PROFINET IO – Decentral Periphery

Functional Scope

Software-Stack

Device Model

Objects & Services

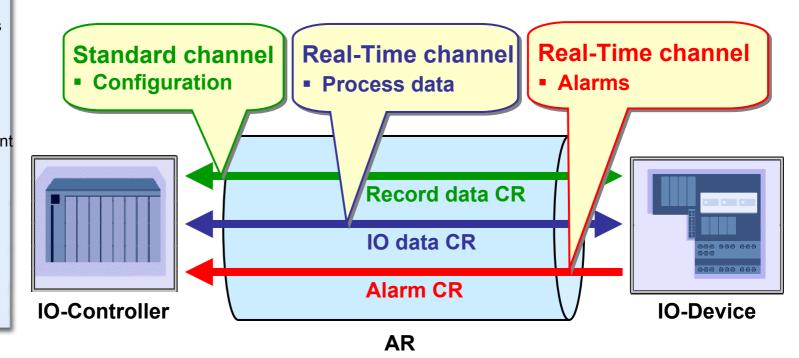
Engineering

Device Description

IO-Controller

Address Assignment

Start up procedure


ARs and CRs

Data Exchange

Diagnosis/Alarms

Proxy

- There is an Application Relation (AR) defined between IO-Controller and IO-Device
- An AR may contain several Communication Relations (CR's) for configuration, process data and alarms

© PROFIBUS International

Standard-Ethernet-Frame with PROFINET-Extension

PROFINET IO – Decentral Periphery

Functional Scope

Software-Stack

Device Model

Objects & Services

Engineering

Device Description

IO-Controller

Address Assignment

Start up procedure

ARs and CRs

Data Exchange

Diagnosis/Alarms

Proxy

Bit Order 10101010		Ethernet-Frame										
,	Pre- amble 7 Byte	Sync 1 Byte	Dest MAC 6 Byte	MAC	type	VLAN- Tag 2 Byte	type	ID	Process Data	Status Information 4 Byte	FCS 4 Byte	
•												

PROFINET Data

VLAN-Tag: Definition of the priority

Standard Ethernet-Header

The minimum Ethernet frame is 64 bytes

* 802.1 Q

Reduction Ratio

PROFINET IO – Decentral Periphery

Functional Scope

Software-Stack

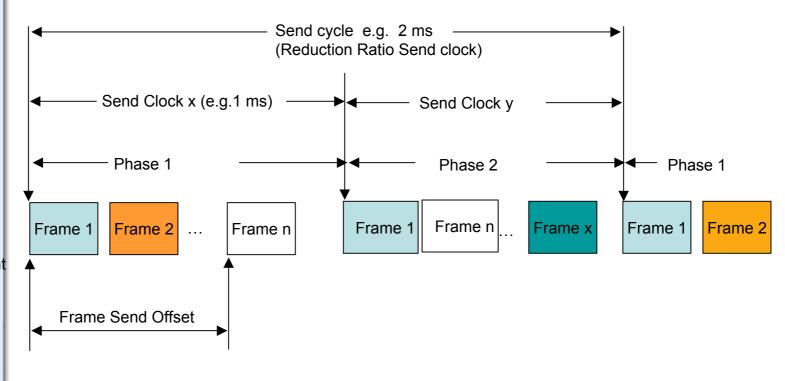
Device Model

Objects & Services

Engineering

Device Description

IO-Controller


Address Assignment

Start up procedure

ARs and CRs

Data Exchange

Diagnosis/Alarms

Quick Error Localization through Structured Error Information

PROFINET IO – Decentral Periphery

Functional Scope

Software-Stack

Device Model

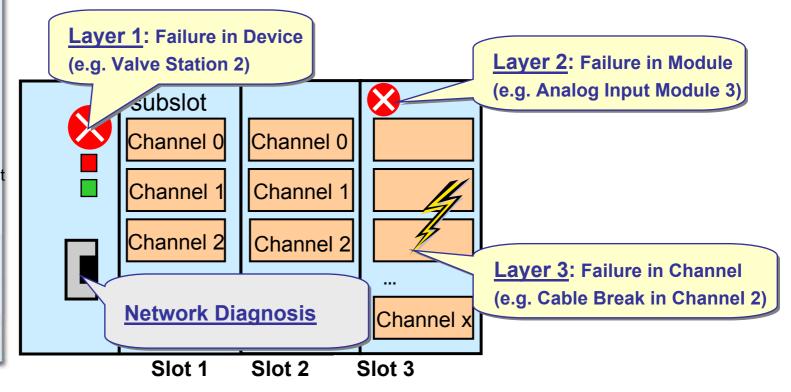
Objects & Services

Engineering

Device Description

IO-Controller

Address Assignment


Start up procedure

ARs and CRs

Data Exchange

Diagnosis/Alarms

- The diagnostic information is structured hierarchically
 - Station name, slot, subslot, channel, channel type, error information
- SNMP completes the diagnosis with network information

Report of Alarms

PROFINET IO – Decentral Periphery

Functional Scope

Software-Stack

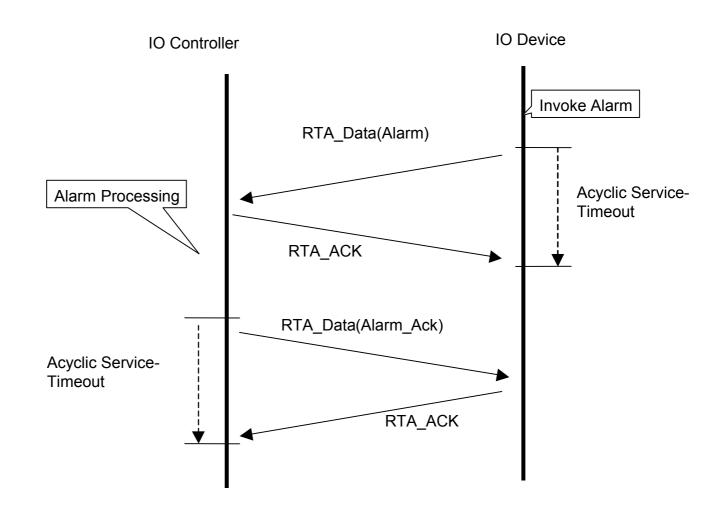
Device Model

Objects & Services

Engineering

Device Description

IO-Controller


Address Assignment

Start up procedure

ARs and CRs

Data Exchange

Diagnosis/Alarms

Network Diagnosis

PROFINET IO – Decentral Periphery

Functional Scope

Software-Stack

Device Model

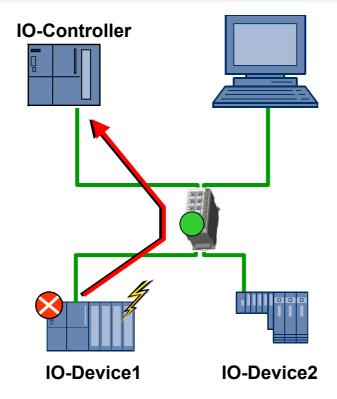
Objects & Services

Engineering

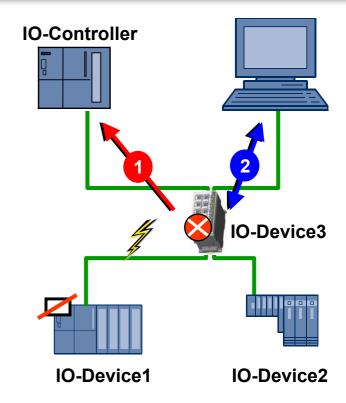
Device Description

IO-Controller

Address Assignment


Start up procedure

ARs and CRs


Data Exchange

Diagnosis/Alarms

Proxy

 The switch passes the PROFINET-Diagnosis from the IO-Devices to the Controller

- Switch is configured as IO-Device (GSDML)
- Switch reports Network-failure as PROFINET-Diagnosis to the IO-Controller(1)
- Additional SNMP-channel for Standard-Information (2)

Diagnosis there, where it is needed

PROFINET IO – Decentral Periphery

Functional Scope

Software-Stack

Device Model

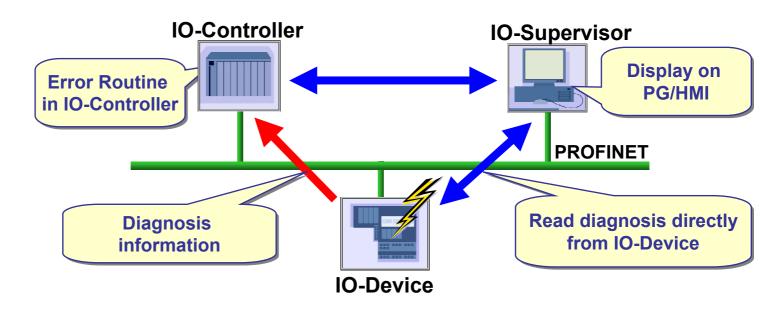
Objects & Services

Engineering

Device Description

IO-Controller

Address Assignment


Start up procedure

ARs and CRs

Data Exchange

Diagnosis/Alarms

- Diagnosis information is transmitted as alarm from the IO-Device to the IO-Controller
 - The alarm triggers a reaction in the PLC program
- IO-Supervisor gets the diagnosis information directly from the IO-Device
 - Display diagnosis information on service PG or HMI station

Integration of PROFIBUS in PROFINET

PROFINET IO – Decentral Periphery

Functional Scope

Software-Stack

Device Model

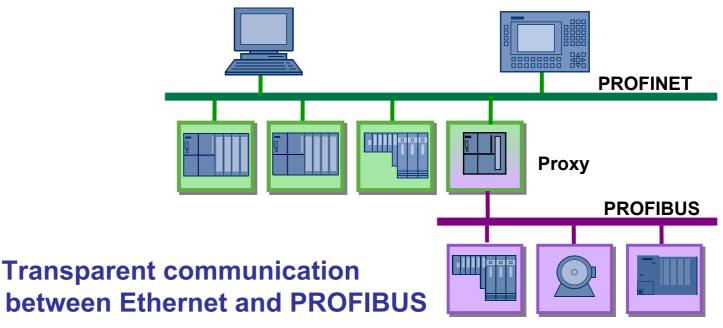
Objects & Services

Engineering

Device Description

IO-Controller

Address Assignment


Start up procedure

ARs and CRs

Data Exchange

Diagnosis/Alarms

Proxy

- Parts or even the complete PROFIBUS is represented by a Proxy
- The Proxy is a PROFINET participant on Ethernet and DP-Master for PROFIBUS

Openness through integration of existing field buses is Investment protection for device manufacturers and users

PROFINET IO / PROFIBUS - System

PROFINET IO – Decentral Periphery

Functional Scope

Software-Stack

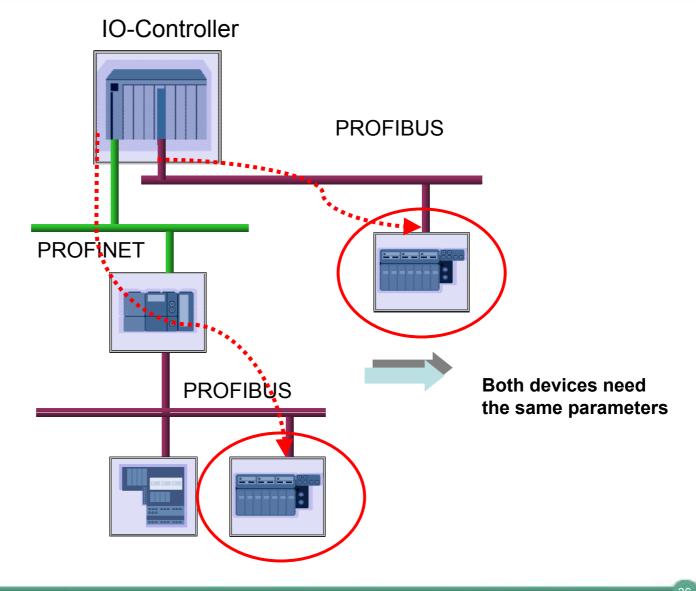
Device Model

Objects & Services

Engineering

Device Description

IO-Controller


Address Assignment

Start up procedure

ARs and CRs

Data Exchange

Diagnosis/Alarms

PROFINET IO – Proxy

PROFINET IO – Decentral Periphery

Functional Scope

Software-Stack

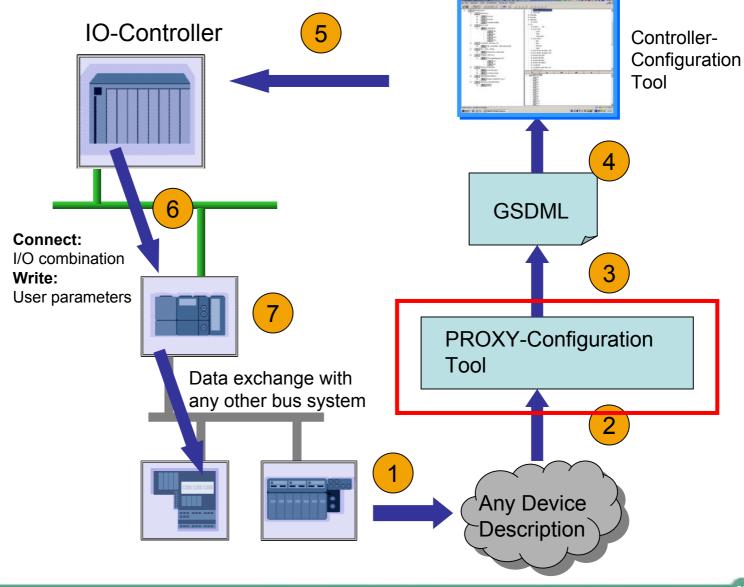
Device Model

Objects & Services

Engineering

Device Description

IO-Controller


Address Assignment

Start up procedure

ARs and CRs

Data Exchange

Diagnosis/Alarms

